温故知新

nosql:

David Berube’s article debuts with a very good overview of the different approaches for creating and managing work queues:

There are many approaches to creating work queues. One option, though naive, is to use a relational database management system (RDBMS). This is simple to implement because many architectures already have a database system such as MySQL. However, performance is less than optimal compared with other approaches. The atomicity, consistency, isolation, and durability (ACID) compliance required for RDBMS is not necessary for this scenario and negatively impacts performance. A simpler system can perform better.

One system that has gained in popularity for this use is Redis. It’s a key-value data store, like the highly popular memcached, but with more features. For example, Redis has support for pushing and popping elements off lists in a highly scalable and efficient way. Resque, often used with Ruby on Rails, is a system built on top of Redis (see Resources for more details). However, Redis supports only simple primitives. You can’t insert complex objects into the lists, and it has relatively limited support for managing items in those lists.

Alternatively, many systems use a message broker such as Apache ActiveMQ or RabbitMQ. Although these systems are fast and scalable, they’re designed for simple messages. If you want to perform nontrivial reporting on your work queues or modify items in the queues, you are stuck because message brokers rarely offer those features. Fortunately, a powerful, scalable solution is available: MongoDB.

MongoDB allows you to create queues that contain complex nested data. Its locking semantics guarantee you won’t experience problems with concurrency, and its scalability ensures you can run large systems. Because MongoDB is a powerful relational database, you can also run robust reporting on your queue and prioritize by complex criteria. However, MongoDB is not a traditional RDBMS. For instance, it does not support Structured Query Language (SQL) queries.

MongoDB has many appealing features in addition to excellent performance for work queues, such as a flexible, schemaless approach. It supports nested data structures, meaning you can even store subdocuments. Because it is a more full-featured data store than Redis, it provides a richer set of management functions so you can easily view, query, update, and delete jobs on any arbitrary criteria.

Using MongoDB as a queueing system is in many regards as good and as wrong as using a relational database for this type of functionality. They completely lack the semantics and features required by both queues and pubsub. Redis (and obviously the dedicated MOMs) supports natively both queues and pubsub semantics.

So even if the article lists a couple of reasons why MongoDB could be used as a queuing system, consider this solution if and only if the only system you are allowed to run on your environment is MongoDB.

Original title and link: MongoDB Work Queues: Techniques to Easily Store and Process Complex Jobs (NoSQL database©myNoSQL)

inercia:

A REST interface to RabbitMQ, with additional persistence…

war-for-freedom:

I must tell this to myself every day.

obwohl ich weiss nicht original chinesische saetze

war-for-freedom:

I must tell this to myself every day.

obwohl ich weiss nicht original chinesische saetze

averymuether:

Finished version! Alternative protein sources poster.

averymuether:

Finished version! Alternative protein sources poster.

theastrarium:

☆ Metaphysical / Spiritual ☆

Lol

awkwardsituationist:

photos by mohammad reza domiri ganji in iran of: (1) the dome of the seyyed mosque in isfahan; (2,8) the nasīr al mulk mosque, or pink mosque, in shiraz; (3,4) the vakil mosque in shiraz; (5) the ceiling of the fifth floor of ali qapu in isfahan; (6,10) the vakil bathhouse in shiraz; (7) the imam mosque in isfahan; (9) the jame mosque of yazd

nice

nice